Математический анализ http://fislub.ru/ Векторная алгебра http://aleksandradudnik.ru/

Физические основы механики Примеры решения задач

• Законы Кеплера.

1. Планеты движутся по эллипсам, в одном из фокусов которых находится Солнце.

2. Радиус-вектор планеты в равные времена описывает одинаковые площади.

3. Квадраты периодов обращения любых двух планет относятся как кубы больших полуосей их орбит:

Законы Кеплера справедливы также для движения спутников вокруг планеты. Вынужденные колебания – это колебания, которые происходят в колебательной системе под действием внешней вынуждающей силы

• Относительная деформация при продольном растяжении или сжатии тела

где ε — относительное удлинение (сжатие); x — абсолютное удлинение (рис. 4.1); l — начальная длина тела.

 

Второе начало термодинамики. Термодинамический процесс называется обратимым, если он может происходить как в прямом, так и в обратном направлении, а в окружающей среде и в системе при этом не происходит никаких изменений. Всякий процесс, не удовлетворяющий этим условиям, является необратимым.
Относительная деформация при сдвиге определяется из формулы

Рис. 4.1 Рис. 4.2

где — относительный сдвиг; Δs — абсолютный сдвиг параллельных слоев тела относительно друг друга (рис. 4.2); h — расстояние между- слоями; — угол сдвига. (Для малых углов)

• Напряжение нормальное

где Fynp — упругая сила, перпендикулярная поперечному сечению тела; S — площадь этого сечения.

Напряжение тангенциальное

где Fynp — упругая сила, действующая вдоль слоя тела; S — площадь этого слоя.

• Закон Гука для продольного растяжения или сжатия

 или  ,

где k — коэффициент упругости (в случае пружины — жесткость); Е — модуль Юнга.

Закон Гука для сдвига

  , или ,

где G — модуль поперечной упругости (модуль сдвига).

• Момент, закручивающий на угол φ однородный круглый стержень,

,

где С — постоянная кручения.

• Работа, совершаемая при деформации тела,

• Потенциальная энергия растянутого или сжатого стержня

  , или  , или , где V — объем тела.

Примеры решения задач

Пример 1. Определить вторую космическую скорость υ2 ракеты, запущенной с поверхности Земли.

Примечание. Второй космической (или параболической) скоростью υ2 называется минимальная скорость, которую нужно сообщить телу, чтобы оно удалилось с поверхности Земли в бесконечность (при этом сопротивление воздуха в расчет не принимается и предполагается, что на тело действует только поле тяготения Земли).

Решение. При удалении тела массой т в бесконечность его потенциальная энергия возрастает за счет убыли кинетической энергии и в бесконечности достигает максимального значения, равного нулю. Согласно определению второй космической скорости, кинетическая энергия в бесконечности также равна нулю. Таким образом, в бесконечности Т∞=0 и П∞ =0. В соответствии с законом сохранения энергии в механике

Пример 3. Найти выражение для потенциальной энергии П гравитационного взаимодействия Земли и тела массой m, находящегося на расстоянии r от центра Земли за пределами ее поверхности. Построить график П(r).

Решение. Потенциальная энергия в поле консервативных сил (гравитационные силы консервативны) связана с силой следующим соотношением: Потенциальная энергия гравитационного взаимодействия тел, бесконечно удаленных друг от друга, принимается равной нулю

Пример 4. В гравитационном поле Земли тело массой m перемещается из точки 1 в точку 2 (рис. 4.5). Определить скорость v2 тела в точке 2, если в точке 1 его скорость

Ускорение свободного падения g считать известным.

Решение. Система тело — Земля является замкнутой, в которой действует

Пример 5. Вычислить работу А12 сил гравитационного поля Земли при перемещении тела массой m=10 кг из точки 1 в точку 2 (рис. 4.5). Радиус R земли и ускорение g свободного падения вблизи поверхности Земли считать известными.

Решение. Для решения задачи воспользуемся соотношением между работой А и изменением ΔП потенциальной энергии. Так как силы системы — гравитационные — относятся к силам консервативным, то работа сил поля совершается за счет убыли потенциальной энергии, т. е.   (1) где П1 и П2 — потенциальные энергии системы тело — Земля соответственно в начальном и конечном ее состояниях.

Решение. 1. Нормальное напряжение материала растянутого стержня выражается формулой σ=F/S, где F — сила, действующая вдоль оси стержня. В данном случае F равна силе тяжести mg и поэтому можем записать

Сделав вычисления, найдем

2. Абсолютное удлинение выражается формулой

где Е — модуль Юнга.


На главную