Инженерная графика http://kmatem.ru/ Промышленная электроника курсовая электротехника

Физические основы механики Примеры решения задач

Динамика вращательного движения твердого тела вокруг неподвижной оси

Основные формулы

• Момент силы F, действующей на тело, относительно оси вращения

,

где  — проекция силы F на плоскость, перпендикулярную оси вращения; l — плечо силы F (кратчайшее расстояние от оси вращения до линии действия силы).

• Момент инерции относительно оси вращения:

а) материальной точки 

J=mr2,

где т — масса точки; r — расстояние ее от оси вращения;

б) дискретного твердого тела

где  — масса i-го элемента тела; ri — расстояние этого элемента от оси вращения; п — число элементов тела;

в) сплошного твердого тела 

Если тело однородно, т. е. его плотность  одинакова по всему объему, то

dm=dV и

где V — объем тела.

• Моменты инерции некоторых тел правильной геометрической формы:

Тело

Ось, относительно которой определяется момент инерции

Формула момента инерции

Однородный тонкий стержень массой т и длиной l

Тонкое кольцо, обруч, труба радиусом R и массой т, маховик радиусом R и массой т, распределенной по ободу

Круглый однородный диск (цилиндр) радиусом R и массой т Однородный шар массой т и радиусом R

Проходит через центр тяжести стержня перпендикулярно стержню

Проходит через конец стержня перпендикулярно стержню

Проходит через центр перпендикулярно плоскости основания

Проходит через центр диска перпендикулярно плоскости основания

Проходит через центр шара

1/12ml2

1/3ml2

mR2

1/2mR2

2/5mR2

Теорема Штейнера. Момент инерции тела относительно произвольной оси

Работа и мощность

Пример 2. Физический маятник представляет собой стержень длиной l=1 м и массой m1=l кг с прикрепленным к одному из его концов диском массой т2=0,5 m1. Определить момент инерции Jz такого маятника относительно оси Оz, проходящей через точку О на стержне перпендикулярно плоскости чертежа.

Пример 3. Вал в виде сплошного цилиндра массой m1=10 кг насажен на горизонтальную ось. На цилиндр намотан шнур, к свободному концу которого подвешена гиря массой m2=2 кг. С каким ускорением а будет опускаться гиря, если ее предоставить самой себе?

Решение. Линейное ускорение а гири равно тангенциальному ускорению точек вала, лежащих на его цилиндрической поверхности, и связано с угловым ускорением s вала соотношением

а=,  (1)

где r — радиус вала.

Угловое ускорение вала выражается основным уравнением динамики вращающегося тела

Решение. Применим к решению задачи основные законы поступательного и вращательного движения. На каждый из движущихся грузов действуют две силы: сила тяжести mg, направленная вниз, и сила Т натяжения нити, направленная вверх. По второму закону динамики вращательного движения, изменение момента импульса вращающегося тела равно произведению момента силы, действующего на тело, на время действия этого момента:

Пример 6. Платформа в виде диска радиусом R= 1,5 м и массой m1=180 кг вращается по инерции около вертикальной оси с частотой n=10 мин-1. В центре платформы стоит человек массой т2=60 кг. Какую линейную скорость относительно пола помещения будет иметь человек, если он перейдет на край платформы?

Линейная скорость человека, стоящего на краю платформы, связана с угловой скоростью соотношением

Пример 7. Человек стоит в центре скамьи Жуковского и вместе с ней вращается по инерции. Частота вращения n1=0,5 c-1. Момент инерции jo тела человека относительно оси вращения равен 1,6 кг м2. В вытянутых в стороны руках человек держит по гире массой m=2 кг каждая. Расстояние между гирями l1=l,6 м. Определить частоту вращения n2, скамьи с человеком, когда он опустит руки и расстояние l2 между гирями станет равным 0,4 м. Моментом инерции скамьи пренебречь.

Пример 8. Стержень длиной l=1,5 м и массой М=10 кг может вращаться вокруг неподвижной оси, проходящей через верхний конец стержня. В середину стержня ударяет пуля массой m=10 г, летящая в горизонтальном направлении со скоростью vo=500 м/с, и застревает в стержне. На какой угол  отклонится стержень после удара?

Решение. Удар пули следует рассматривать как неупругий: после удара и нуля, и соответствующая точка стержня будут двигаться с одинаковыми скоростями.

Рассмотрим подробнее явления, происходящие при ударе. Сначала пуля, ударившись о стержень, за ничтожно малый промежуток времени приводит его в движение с угловой скоростью  и сообщает ему кинетическую энергию


На главную