Энергетическая установка ГТ-МГР Найти модуль и аргумент чисел http://rai53.ru/ курс

Физические основы механики Примеры решения задач

 Сила трения скольжения

Fтр=fN,

где f — коэффициент трения скольжения; N — сила нормального давления.

• Координаты центра масс системы материальных точек

,,

где mi — масса i-й материальной точки; xi, yi;, zi; — ее координаты.

Закон сохранения импульса

  или

где N — число материальных точек (или тел), входящих в систему.

Элементы физики твердого тела Понятие о зонной теории твердых тел Используя уравнение Шредингера — основное уравнение динамики в нерелятивистской квантовой механике, — в принципе можно рассмотреть задачу о кристалле, например найти возможные значения его энергии, а также соответствующие энергетические состояния. Однако как в классической, так и в квантовой механике отсутствуют методы точного решения динамической задачи для системы многих частиц.

• Работа, совершаемая постоянной силой,

, или ,

где   — угол между направлениями векторов силы F и перемещения r.

• Работа, совершаемая переменной силой,

где интегрирование ведется вдоль траектории, обозначаемой L.

• Средняя мощность за интервал времени t

.

• Мгновенная мощность

, или N=Fvcos,

где dA — работа, совершаемая за промежуток времени dt.

• Кинетическая энергия материальной точки (или тела), движущейся поступательно,

T=mv2/2, или T=p2/(2m).

• Потенциальная энергия тела и сила, действующая на тело в данной точке поля, связаны соотношением

F= - grad П или ,

где i, j, k — единичные векторы (орты). В частном случае, когда

* См. сноску на с. 19.

поле сил обладает сферической симметрией (как, например, гравитационное),

Потенциальная энергия упругодеформированного тела (сжатой или растянутой пружины) П=kx2/2.

Потенциальная энергия гравитационного взаимодействия двух материальных точек (или тел) массами m1, и т2, находящихся на расстоянии r друг от друга,

Потенциальная энергия тела, находящегося в однородном поле силы тяжести, П=mgh,

Пример 2. В лифте на пружинных весах находится тело массой т=10 кг (рис. 2.2, а). Лифт движется с ускорением а=2 м/с2. Определить показания весов в двух случаях, когда ускорение лифта направлено: 1) вертикально вверх, 2) вертикально вниз.

Пример 3. При падении тела с большой высоты его скорость vуст установившемся движении достигает 80 м/с. Определить время , в течение которого начиная от момента начала падения скорость становится равной 1/2 vуст. Силу сопротивления воздуха принять пропорциональной скорости тела.

Решение. На падающее тело действуют две силы сила тяжести mg и сила сопротивления воздуха Fc.

Пример 4. Шар массой m=0,3 кг, двигаясь со скоростью v=10 м/с, упруго ударяется о гладкую неподвижную стенку так, что скорость его направлена под углом  =30° к нормали. Определить импульс р, получаемый стенкой.

Решение. Сначала проанализируем условие задачи. Стенка неподвижна, поэтому система отсчета, связанная с ней, будет инерциальной. Удар о стенку упругий; следовательно, можно воспользоваться законом сохранения механической энергии. Из него, учитывая, что масса стенки много больше массы шара, следует равенство модулей скоростей шара |v| до и |u| после удара.

Пример 5. На спокойной воде пруда стоит лодка длиной L и массой М перпендикулярно берегу, обращенная к нему носом. На корме стоит человек массой т. На какое расстояние s приблизится лодка к берегу, если человек перейдет с кормы на нос лодки? Трением о воду и воздух пренебречь.

Решение. 1. Неупругие шары не восстанавливают после удара своей первоначальной формы. Следовательно, не возникают силы, отталкивающие шары друг от друга, и шары после удара будут двигаться совместно с одной и той же скоростью и. Определим эту скорость по закону сохранения импульса. Так как шары движутся по одной прямой, то этот закон можно записать в скалярной форме: m1v1+т2v2=(т1+m2)и, откуда u=( m1v1+т2v2)/(т1+m2).

Направление скорости первого шара примем за положительное, тогда при вычислении скорость второго шара, который движется навстречу первому, следует взять со знаком минус: u=(2,5 6—1,5 2)/(2,5+1,5) м/с=3 м/с.

Пример 8. Молот массой m1=200 кг падает на поковку, масса т2, которой вместе с наковальней равна 2500 кг. Скорость v1 молота в момент удара равна 2 м/с. Найти: 1) кинетическую энергию T1 молота в момент удара; 2) энергию Т2, переданную фундаменту; 3) энергию Т, затраченную на деформацию поковки; 4) коэффициент полезного действия  (КПД) удара молота о поковку. Удар молота о поковку рассматривать как неупругий.

Пример 9. Боек (ударная часть) свайного молота массой т1 =500 кг падает на сваю массой m2=100 кг со скоростью v1=4 м/с. Определить: 1) кинетическую энергию T1 бойка в момент удара; 2) энергию T2, затраченную на углубление сваи в грунт; 3) кинетическую энергию Т, перешедшую во внутреннюю энергию системы; 4) КПД  удара бойка о сваю. Удар бойка о сваю рассматривать как неупругий.

Решение. 1. Кинетическую энергию бойка в момент удара о сваю находим по формуле T1=m1v12/2. Подставив значения m1, и v1 и произведя вычисления, получим T1=(500× 42)/2 Дж=4000 Дж=4 кДж.

2. Чтобы определить энергию, затраченную на углубление сваи, предварительно найдем скорость системы боек — свая непосредственно после удара. Для этого применим закон сохранения импульса, который в случае неупругого удара выражается формулой т1v1+m2v2=(m1+m2)u,  (1)


На главную