Математика курс лекций, матрицы

Содержание сборочного чертежа Библиотека учебных материалов для студентов. Математика

Разложение матрицы в произведение простейших

Матричные уравнения

Разложение матрицы в произведение простейших

 Пусть  – некоторые матрицы. Введём следующее обозначение, предполагая при этом, что произведение в правой части существует,

.

Предложение 1.5. Любую ненулевую матрицу из  можно представить в виде произведения

,  (1.22)

где , – элементарные матрицы порядка , – элементарные матрицы порядка , и матрица  имеет вид (1.21).

Найти интеграл . Решение. Применим указанный прием: выделим в числителе производную квадратного трехчлена и преобразуем числитель:

  ◄ В силу предложения 1.4 существует конечное число строчных и столбцовых элементарных преобразований, приводящих матрицу   к виду . Так как проведение одного строчного элементарного преобразования в матрице  равносильно умножению этой матрицы слева на некоторую элементарную  матрицу порядка , а проведение в  одного столбцового элементарного преобразования равносильно умножению матрицы  справа на некоторую элементарную матрицу  порядка , получаем матричное равенство

Предложение 1.6. (1-й критерий обратимости матрицы). Для того, чтобы матрица  была обратимой, необходимо и достаточно, чтобы она была представима в виде произведения элементарных матриц.

 ◄ Достаточность. Элементарные матрицы обратимы, а произведение обратимых матриц есть матрица обратимая. Поэтому утверждение “матрица, представимая в виде произведения элементарных матриц, обратима” очевидно.

 Необходимость. Пусть матрица  обратима. Покажем, что она представима в виде произведения элементарных матриц. Прежде всего заметим, что в силу предложения 1.5 справедливо равенство (1.22), где все матрицы, входящие в это равенство, квадратные и имеют одинаковый порядок, например, . Наше утверждение будет верно, если мы покажем, что . В самом деле, матрицы

Пример Найти разложение в ряд Фурье функции:  

 

1.14 Матричные уравнения

 Уравнение, называется матричным, если в качестве неизвестного оно содержит матрицу. Простейшие матричные уравнения имеют вид

,  (1.24)

, (1.25)

,  (1.26)

где  – известные матрицы, а  – неизвестные матрицы соответствующих размеров. В общем случае уравнения (1.24)-(1.26) эквивалентны некоторым системам линейных алгебраических уравнений (СЛАУ), но в том частном случае, когда матрицы   и  обратимы, теория этих уравнений проста. Прежде чем изложить её отметим, что числовая матрица  является решением уравнения (1.24), если при подстановке её в это уравнение вместо матрицы  мы получаем верное матричное равенство (и аналогично для уравнений (1.25) и (1.26)).

 Предложение 1.8. Пусть матрицы  и  обратимы, тогда уравнения (1.24)-(1.26) разрешимы при любых правых частях  соответственно, а их единственные решения определяются по формулам

Упражнения

 1. Выяснить, какие из следующих матриц равны

.

  2. Написать матрицу, транспонированную данным:

.

  3. Если матрица  имеет вид

,

то каков вид матрицы ?

 4. Матрицы  и  имеют вид:

При вычислении сложных матричных выражений целесообразно продумать порядок действий, так как от этого зависит объём вычислений.

  Пример 10. Найти матрицу , если

.

  ◄ Матрица  существует, так как порядки сомножителей согласованны

,

и имеем порядок . Благодаря свойству ассоциативности операции умножения матриц последовательность её вычисления может быть различной, например,   или .

 Напомним, что при вычислении произведения двух матриц используется скалярное умножение двух арифметических векторов порядка . Будем называть это скалярное умножение «простым», если , и – «сложным», если  (сокращённо ПСУ и ССУ). Посчитаем количества ПСУ и ССУ, которые необходимо совершить, чтобы вычислить матрицу   указанными выше способами.

Преимущество первого способа над вторым очевидно. Но есть ещё один порядок умножения, позволяющий сократить объём вычислений. Именно, .

 В самом деле,

1)  – 3 ССУ

2)  – 2 ССУ

3)  – 8 ПСУ.

  Всего: 5 ССУ и 8 ПСУ.

 Анализ трёх рассмотренных способов вычисления матрицы  позволяет дать рекомендацию: при вычислении матричных произведений с числом сомножителей больше 2-х целесообразно начинать вычисление произведений с наименьшим числом столбцов у правого сомножителя, и заканчивать вычислением произведений с наибольшим числом столбцов у правого сомножителя. ►

Часто сложное матричное выражение можно до его вычисления привести к более простому виду, используя свойства операций над матрицами.

 Пример 12. Найти матрицу

,

если

  ◄ Заметив, что

,

где

,

получаем, что

. ►

  9. Найти матрицу , если:

 а) ;

 б) .

 10. Найти матрицу , если:

 а) ;

 б) ;

 в) .

 11. Найти матрицу , если

.

  12. Найти матрицу , если:

 а) ;

 б) .

 Введём обозначение для степени матрицы

,

И заметим, что ввиду некоммутативности операции умножения матриц

.

Из условия согласования следует, что степень матрицы определена только для квадратных матриц, а степень произведения  определена для матриц прямоугольного вида. При этом число строк матрицы  должно совпадать с числом столбцов матрицы .

При вычислении степеней матриц и матричных выражений следует попытаться среди малых степеней  найти максимально простую матрицу с тем, чтобы использовать её для упрощения вычисления матрицы .

Пример 15. Разложить матрицу  в произведение простейших. Выяснить, является ли матрица  обратимой, и в случае её обратимости найти матрицу , если

.

 ◄ Решение основано на предложении 1.6 (см. пример 9). Приводим элементарными преобразованиями матрицу  к виду ,

.

  Матрица  обратима и удовлетворяет соотношению

.

Умножая полученное равенство справа на матрицу

,

  получаем, что

.

Теперь умножаем новое равенство на матрицу

 20. Матрицы из упражнения 19 разложить в произведение простейших.

 21. Выяснить, является ли матрица  обратимой, и в случае её обратимости найти матрицу . Матрица   имеет вид:

 а) , б) , в) .

Замечание. В следующей главе, основываясь на данном методе обращения матриц, мы построим более эффективную вычислительную схему для нахождения обратной матрицы, связанную с методом Гаусса решения систем линейных алгебраических уравнений.

Решение. Поделив каждое слагаемое числителя подынтегральной дроби на знаменатель, и используя, что интеграл от суммы функций равен сумме интегралов от этих функций, получим:

.

Первый интеграл является табличным: .

Во втором интеграле воспользуемся тем, что .

Получим следующую запись .

Если представить, что arcsinx=t, то данный интеграл будет интегралом от степени , но явно переходить к переменной t нет необходимости.

.

Таким образом, для заданного интеграла имеем:

Пример 4. Найти интеграл .

Решение. Отделим от нечетной степени один множитель: .

Если положить , то . Перейдем в интеграле к новой переменной t:

Возвратившись к прежней переменной, получаем: .

Пример 5. Найти интеграл  .

Решение. Понизим у  и  степень с помощью следующих формул: .

Тогда в исходном интеграле получим следующее:

.

Так как дроби между собой равны, а также равны их знаменатели, то и числители также равны. Поэтому у многочленов, стоящих в числителе приравняем коэффициенты при х2,х1,х0 и получим систему трех уравнений с тремя неизвестными:

.

Решив эту систему получим следующие значения A, B и C: .

Значит, наша дробь раскладывается на сумму дробей:

.

Подставляя это разложение в интеграл, получаем:

Пример 8. Найти интеграл .

Определенный интеграл

1. Вычисление определенного интеграла

Пример 9. Вычислить интеграл .

Решение. Для того, чтобы вычислить данный интеграл, воспользуемся основной тригонометрической заменой:

 

Так как данный интеграл является определенным, то при замене переменной , меняются пределы интегрирования:

.

На отрезке  по переменной t функция  непрерывно дифференцируема, монотонна и в границах его принимает значения границ отрезка  по переменной x. Следовательно, выбранная замена переменной правомерна. Получаем:

.

На главную