Начертательная геометрия. Примеры выполнения графических заданий Начертательная геометрия

Конические сечения

Рассмотрим два примера на построение точек пересечения линии с поверхностью. Пример Построить точку пересечения кривой линии n с конической поверхностью

Развёртки поверхностей Представим поверхность в виде тонкой и гибкой, но нерастяжимой пленки. В этом случае некоторые поверхности можно постепенным изгибанием совместить с плоскостью так, что при этом не возникает ни разрывов, ни складок. Поверхности, обладающие этим свойством, называются развертывающимися, а фигура, полученная в результате совмещения поверхности с плоскостью – разверткой данной поверхности.

Способ триангуляции (треугольников)

Этот способ позволяет строить развёртки любого многогранника. Для этого боковые грани многогранника разбиваются диагоналями на треугольники (для призм и призматоидов, у пирамид грани уже треугольные). Одним из известных способов необходимо найти натуральные величины всех боковых ребер и оснований многогранника.

Построение приближенных разверток развертывающихся линейчатых поверхностей Для развертывающихся линейчатых поверхностей строят приближенные развертки потому, что в процессе построения развертки заданную поверхность заменяют (аппроксимируют) вписанной в неё или описанной вокруг неё многогранной поверхностью (цилиндрические поверхности заменяют призмами, конические поверхности – пирамидами).

Изображение проекций многогранников Многогранники представляют собой тела, ограниченные рядом плоскостей, т.е. гранями. Вследствие этого изображение их сводится к изображению ребер – линий пересечения граней и вершины – точек пересечения ребер.

Пересекая прямой круговой конус секущими плоскостями можно получить в сечении различные кривые второго порядка. На рис.13.10 показаны положения секущих плоскостей и указаны, какие кривые в этом случае будут лежать в сечении.

Рис.13.10

8. Построение линии пересечения двух плоскостей

 Как известно, две плоскости пересекаются по прямой линии. Прямая определяется двумя точками. Поэтому для построения линии пересечения двух плоскостей достаточно построить две её точки. А для этого нужно провести две вспомогательные плоскости. Решение задачи выполняется в следующей последовательности.

1. Обе заданные плоскости пересекаются вспомогательной плоскостью.

2. Строятся прямые пересечения вспомогательной плоскости с каждой из заданных плоскостей.

3. Находится точка пересечения построенных прямых. Эта точка будет принадлежать искомой линии пересечения данных плоскостей.

Для нахождения второй точки линии пересечения необходимо провести вторую вспомогательную плоскость и повторить приведённый алгоритм решения.

На рис.13.11 приведён пример нахождения линии пересечения двух плоскостей общего положения Σ(aÇb) и Θ(m||n).

Рис.13.11

  Для построения точки К проведена вспомогательная горизонтальная плоскость уровня Н1, а для построения точки L - горизонтальная плоскость уровня Н2.

9. Построение точек пересечения линии с поверхностью

Построения точек пересечения линии с какой-либо поверхностью выполняется с помощью вспомогательной поверхности.

Рис.13.12

Пусть задана поверхность Φ и кривая n, и необходимо найти их точку пересечения (рис.13.12). Задача решается в следующей последовательности.

1. Через данную кривую n проводится вспомогательная секущая поверхность Θ (Θ Ì n).

2. Находится линия m пересечения вспомогательной поверхности Θ с данной поверхностью Φ: m=ΘÇΦ.

3. Определяется точка К пересечения полученной линии m с данной кривой n. Эта точка и будет являться искомой точкой пересечения линии с поверхностью.

В случае пересечения кривой линии с поверхностью в качестве вспомогательной поверхности используют проецирующую цилиндрическую поверхность, которую проводят так, чтобы заданная кривая всеми точками лежала на этой поверхности. На комплексном чертеже проецирующую цилиндрическую поверхность задают одним своим следом, совпадающим либо с горизонтальной проекцией линии, либо с фронтальной.

В случае пересечения прямой с поверхностью в качестве вспомогательной поверхности используют плоскость. Сложность решения задачи во многом зависит от сложности нахождения сечения поверхности вспомогательной плоскостью. Поэтому в качестве вспомогательной необходимо использовать плоскость, пересекающую поверхность по графически простым линиям. Чаще всего применяются проецирующие плоскости.


На главную