Примеры решения задач контрольной работы по математике

Покажем, что множество функций, имеющих производную в некоторой фиксированной точке $ x_0$, замкнуто относительно арифметических операций с этими функциями. А именно, докажем следующую теорему, дающую основные правила дифференцирования.

Замечания Обозначим функцию $ f(x)$ через $ u$, а функцию $ g(x)$ через $ v$.

Производные некоторых элементарных функций Выше мы уже рассмотрели линейную функцию $ f(x)=kx+b$ и показали, что её производная равна угловому коэффициенту $ k$$\displaystyle (kx+b)'=k.$

Рассмотрим функцию $ f(x)=\mathop{\rm tg}\nolimits x$ как отношение $ \dfrac{\sin x}{\cos x}$

Примеры Найдём производную функции $\displaystyle f(x)=\left\{\begin{array}{ll}
x^2\sin\dfrac{1}{x},&\mbox{ при }x\ne0;\\
0,&\mbox{ при }x=0.
\end{array}\right.
$

Дифференциал Определение   Пусть дана функция $ f(x)$, и $ x_0$ -- внутренняя точка её области определения. Придадим аргументу приращение $ {\Delta}x$ и рассмотрим приращение функции

 

Для удобства приведём полученные выше результаты в виде таблицы. Всюду в этой таблице $ u$ и $ v$ -- функции переменного $ x$, $ c$ -- постоянная. Производные элементарных функций приведены в предположении, что $ u=u(x)$ -- промежуточный аргумент сложной функции.

Производная композиции Пусть $ f(u)$ и $ {\varphi}(x)$ -- такие числовые функции, что определена их композиция $ g(x)=(f\circ{\varphi})(x)=f({\varphi}(x))$. Предположим, что функция $ {\varphi}(x)$ определена в некоторой окрестности точки $ x_0$, а функция $ f(u)$ -- в некоторой окрестности точки $ u_0={\varphi}(x_0)$.

Примеры   Пусть $ y=\sin2x$, то есть $ y=\sin u$, где $ u=2x$: данная функция представлена в виде композиции функций $ \sin u$ и $ 2x$.

ПримерыНайдём производную функции $ y=\cos^52x$. Здесь функция имеет вид $ y=u^5$, с промежуточным аргументом $ u=\cos2x$, который, в свою очередь, является сложной функцией

Инвариантность дифференциала Рассмотрим функцию $ y=f(u)$. Если предположить, что $ u$ -- независимая переменная, то$\displaystyle dy=df(u;du)=f'_u(u)du.$

Производная обратной функции Пусть $ f(x)$ -- непрерывная функция, монотонная на интервале $ (a;b)$.

Найдём производную функции $ {f(x){=}\arcsin x}$. Обратной к этой функции служит главная ветвь функции $ {{\varphi}(y)=\sin y}$ ( $ {-\frac{\pi}{2}\leqslant y\leqslant \frac{\pi}{2}}$), производная которой равна $ {{\varphi}'(y)=\cos y}$.

Пример Аналогично находится производная гиперболического косинуса $ {y=\mathop{\rm ch}\nolimits x=
\frac{1}{2}(e^x+e^{-x})}$:

Сводка основных результатов о производных Для удобства приведём полученные выше результаты в виде таблицы

Пусть задана зависимость двух переменных $ x$ и $ y$ от параметра $ t$, изменяющегося в пределах от $ {\alpha}$ до $ {\beta}$:

Пример Найдём вторую производную функции $ f(x)=\sin^3x$.

Дифференциалы высших порядков и их неинвариантность Напомним, что дифференциал функции $ f(x)$ (называемый также первым дифференциалом, или дифференциалом первого порядка) задаётся формулой $\displaystyle df(x;dx)=f'(x)dx.$

Производная функции, заданной неявно Уравнение вида $ F(x;y)=0$, содержащее переменные $ x$ и $ y$, иногда можно разрешить относительно $ y$ и получить в явном виде зависимость $ y=y(x)$.

Приближённое вычисление производных При численном решении задач, связанных с математическими моделями, в которых используются производные (а к таким моделям приводят почти все физические и технические задачи, описывающие процессы, разворачивающиеся во времени), эти производн$ f'(x),f''(x),\dots$ые часто приходится вычислять приближённо, исходя только из того, что имеется некоторая процедура, вычисляющая значения функции $ f(x)$, поскольку аналитические формулы, задающие $ f'(x),f''(x),\dots$, неизвестны.

Найдём производную функции $ y=\cos(2x+dfrac{\pi}{4})$.

Найдём производную функции $ y=\cos(2x+dfrac{\pi}{4})$ .

Определение производной Производная в точке x0 определяется, как предел приращения функции к приращению аргумента при стремлении последнего к нулю

Рассмотрим функцию $ f(x)=\frac{x}{\vert x\vert}$ на объединении двух интервалов $ \mathcal{D}=(-\infty;0)\cup(0;+\infty)$ .
Рассмотрим функцию $ f(x)=x^2$ на всей числовой оси $ \mathbb{R}$  -- на интервале $ (-\infty;+\infty)$ . Тогда функция $ F(x)=\frac{x^3}{3}$  -- это первообразная для $ f(x)$ на $ \mathbb{R}$ .
Производные некоторых элементарных функций

Дифференциал функции

Геометрическая интерпретация производной Предельное положение хорды, соединяющей точки (x0 , f(x0 )), (x , f(x )) графика, при x® x0 называется касательной к графику функции f(x ) в точке x0 a=arctg=arctg f ¢ (x0).

Основные правила дифференцирования

Производная сложной функции Если существуют f¢(x0), g¢(x0) и x0=g(t0), то в некоторой окрестности t0 определена сложная функция f(g(t)), она дифференцируема в точке t0 и

Вычисление производной обратной функции Пусть f непрерывна и строго монотонна на [a,b]. Пусть в точке x0Î(a,b) существует f¢(x0) ¹ 0, тогда обратная функция x=f -1(y) имеет в точке y0 производную, равную

Производные элементарных функций

Функции заданные параметрически . Если x, y непрерывны на [ a,b ] и x(t) строго монотонна на отрезке [a , b] (например, строго монотонно возрастает), то на [a,b] , a=x( a), b=x(b) определена функция f(x)=y(t(x)), где t(x) – обратная к x(t) функция. График этой функции совпадает с графиком функции

Производные и дифференциалы высших порядков

Производные высших порядков Пусть f(x) определена на (a,b) и имеет в некоторой окрестности точки x0Î(a,b) производную g(x)=f¢(x). Если в точке x0 существует g¢( x0), то она называется производной второго порядка от f в точке x0 и обозначается f ¢¢(x0). Производной n-го порядка называется производная от производной (n-1)- го порядка

Вычисление производных функций, заданных неявно Для вычисления производной y¢(x) функции, заданной неявно уравнением (1) достаточно продифференцировать тождество F(x, f(x))=0 по переменному x. В результате такого дифференцирования всегда будет получаться соотношение вида A(x,y)+B(x,y)y¢=0 , (2)

Формула Лейбница

Дифференциалы высших порядков

Инвариантность формы дифференциала первого порядка Замечание. (Важный частный случай, когда свойство инвариантности наблюдается и для старших дифференциалов ). В случае, когда внутренняя функция суперпозиции линейна, свойство инвариантности сохраняется для дифференциалов произвольных порядков.

Пример. Конденсатор емкостью c включается в цепь с напряжением E и сопротивлением R. Определить заряд q конденсатора в момент t после включения.

Пример Используя определение, найти производную функции .

Найти производную функции  y(x) = sin x .

Производная сложной функции

Пример Найти производную функции .

Определить производную функции .

Производные гиперболических функций

Производная показательной и логарифмической функции

Найти производную функции

Продифференцировать . Решение. Используем формулы производной сложной функции и производной частного

Производные гиперболических функций легко находятся, поскольку гиперболические функции являются комбинациями ex и e−x . Например, гиперболические синус и косинус определяются как

Найти производную функции

Доказать равенство   

Дифференцирование и интегрирование рядов Фурье

Пример Найти ряд Фурье для функции sign x

Найти ряд Фурье функции , зная, что  

Найти ряд Фурье функции , если известно, что 

Исследовать процесс почленного дифференцирования ряда Фурье функции , заданной на интервале

Производная степенной функции

Вычислить производную функции

Найти производную функции

Найти производную функции

Производная произведения и частного функций Пусть u(x) и u(x) - дифференцируемые функции. Тогда произведение функций u(x)v(x) также дифференцируемо и

Найти производную cтепенной функции с отрицательным показателем .

Пусть . Продифференцировать данную функцию, не используя производную сложной функции.

Производные тригонометрических функций Производные шести тригонометрических функций и, соответственно, шести обратных тригонометрических функций определяются следующими формулами (рядом указана область определения каждой функции)

Продифференцировать функцию

Пример Вывести формулу для производной арксинуса.

Производная неявной функции

Дифференцирование и интегрирование степенных рядов

Показать, что  

Найти разложение функции в степенной ряд.

Найти представление в виде степенного ряда функции .

Разложить в степенной ряд экспоненциальную функцию e x .

Производные высшего порядка

Пусть y = f(x) является дифференцируемой функцией. Тогда производная также представляет собой функцию от x. Если она является дифференцируемой функцией, то мы можем найти вторую производную функции f, которая обозначается в виде

Найти y'', если

Найти все производные функции

Найти все производные функции

Правила дифференцирования

Вычислить производную функции y(x), заданной уравнением при условии y = 1.

Найти уравнение касательной к кривой x 4 + y 4 = 2 в точке (1;1).

 

Пример Найти производную функции , где a и b - константы.

Логарифм по основанию e (e - трансцендентное число, приближенно равное 2,718281828...) называется натуральным логарифмом. Натуральный логарифм числа x обозначается ln x . Натуральные логарифмы широко используются в математике, физике и инженерных расчетах.

Вычислить .

Схематически изобразить график функции .

Логарифмическим дифференцированием называется метод дифференцирования функций, при котором сначала находится логарифм функции, а затем вычисляется производная от него. Такой прием позволяет эффективно вычислять производные степенных и рациональных функций.

Вычислить производную функции

Вычислить производную функции

Найдём производную функции

Пусть $ y=\sin2x$, то есть $ y=\sin u$, где $ u=2x$: данная функция представлена в виде композиции функций $ \sin u$ и $ 2x$.

Решение квадратных уравнений с вещественными коэффициентами

Решите уравнение $ {x^2+2x+5=0}$ .

Символ суммирования

Сводка основных результатов о производных

Производные высших порядков

Пример Найдём вторую производную $ y''_{xx}$ функции, заданной параметрически:

Производные высших порядков

Рассмотрим функцию $ y=f(x)=\sin x$.

Найдём вторую производную функции $ f(x)=\sin^3x$

Производные функции, заданной параметрически

Пусть зависимость между $ x$ и $ y$ задана параметрически следующими формулами: $\displaystyle x=\ln(1+t^2); y=\mathop{\rm arctg}\nolimits t.$

Найдём выражение для второй производной $ y''_{xx}$ через параметр $ t$.

Пример  Найдём предел $ \lim\limits_{x\to0}\dfrac{\sin x-x}{x^3}$. (Это предел отношения двух бесконечно малых.
Производная функции, заданной неявно
Возьмём то же уравнение $ e^{xy}+x\cos y=0$ и найдём производную левой части
Четыре теоремы о дифференцируемых функциях

Вычислим частные производные функции двух переменных $\displaystyle f(x_1;x_2)=x_1^2+x_1x_2^3+3x_1-2x_2$

Частные производные

Рассмотрим функцию, заданную при $ x=(x_1;x_2)\in\mathbb{R}^2$ :

Пусть $\displaystyle f(x_1;x_2;x_3)=x_1^3x_2^2x_3^4.$

Если две производных $\displaystyle \frac{\pat^5f}{\pat x_5\pat x_2\pat x_5\pat x_1\pat x_2}$ и $\displaystyle \frac{\pat^5f}{\pat x_1\pat x_2^2\pat x_5^2}$

Разложим рациональную дробь $\displaystyle R(x)=\frac{5x^2+2x-1}{x^3+3x^2+2x+6}$ в сумму простейших дробей и вычислим $ \int R(x)\,dx$ .

Частные производные высших порядков

Вычислим $ \frac{\textstyle{\pat^3f}}{\textstyle{\pat x_1^2\pat x_2}}$ для функции $ f$ из предыдущего примера.

Производная сложной функции

Пусть координаты $ x_1,x_2,x_3$ зависят от $ u_1,u_2$ следующим образом: $\displaystyle x_1=\sin^2u_1; x_2=\sin u_1\cos u_2; x_3=\cos^2u_2.$

Рациональные функции и их интегрирование

Разделим с остатком $ {P(x)=x^3+5x^2-2x+1}$  -- многочлен третьей степени -- на бином $ {Q(x)=x-2}$  -- многочлен первой степени:

Разложим на множители многочлен третьей степени $ {Q(x)=x^3+3x^2+2x+6}$

На главную